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Abstract

This study differentiates p-hacking from publication bias by examining biases
resulting from selective reporting within studies versus selective publication of en-
tire studies. Analyzing a dataset of 400 meta-studies, encompassing nearly 200,000
estimates from approximately 19,000 individual studies in economics and related
social sciences, I observe a notably higher incidence of p-hacking as compared to
selective publication. Employing various meta-regression methods, I find that se-
lective reporting within studies is about 20% more prevalent than publication bias
arising from selection among studies. This finding underscores the considerable in-
fluence of practices such as p-hacking and method-searching, suggesting that they
contribute significantly to selection bias in the economic literature and could affect
the perceived reliability of published findings.
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1 Introduction

Selective reporting of empirical results may distort our understanding of how robust the

documented regularities are and give a false impression of their generalizability. Since the

early 1980s, the critical examination of empirical research, initiated by Edward Leamer,

has catalyzed what is now known as the credibility revolution in economics. This move-

ment has placed a strong emphasis on meta-research and the importance of replicability

of published work. In their influential meta-analyzes, Card and Krueger (1995) addressed

the pivotal question: Does raising the minimum wage reduce employment? Contrary to

standard economic theory, their findings suggested that studies supporting a negative

correlation between higher minimum wages and job availability might be compromised

by specification-searching and publication biases. This meta-study contributed to a body

of work that earned David Card the 2021 Nobel Prize in Economics.

This wave of change has influenced research beyond economics to address what is

commonly referred to as the ”replication crisis” (Camerer et al., 2018), affecting fields

such as medicine and epidemiology with John P. A. Ioannidis at the forefront (Begley &

Ioannidis, 2015; Ioannidis, 2005; Ioannidis et al., 2017), as well as psychology and social

sciences. An expanding body of work explores the issues of potential publication biases

within economics and various other fields (Andrews & Kasy, 2019; Ashenfelter et al.,

1999; Bruns et al., 2019; De Long & Lang, 1992; Doucouliagos & Stanley, 2013; Ferraro

& Shukla, 2020; Furukawa, 2019; Havránek, 2015; Ioannidis, 2005; Ioannidis et al., 2017;

Leamer, 1983; Miguel et al., 2014; Stanley, 2005, 2008).

Statistical techniques to detect and adjust for publication bias fall into two main cat-

egories. The first group consists of traditional methods derived from funnel plot analysis

and the ”incidental” truncation theorem, Greene (1990), assuming that statistically sig-

nificant results in a desirable direction are more likely to be published (Bom & Rachinger,

2019; Duval & Tweedie, 2000; Egger et al., 1997; Furukawa, 2019; Ioannidis et al., 2017;

Stanley, 2008; Stanley & Doucouliagos, 2012, 2014). The second category models the

relationship between a study’s publication probability and p-value, defining a parametric

structure for the distribution of population effects before selection. These models, like
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two-parameter selection models, often favor the publication of affirmative results (An-

drews & Kasy, 2019; Hedges, 1984, 1992; Iyengar & Greenhouse, 1988; Van Assen et al.,

2015; van Aert & Van Assen, 2021; Vevea & Hedges, 1995).

These techniques generally conceptualize publication bias as a filtering mechanism

that affects a set of point estimates that are, on their own, unbiased estimators of the

true population effects. Traditionally viewed, publication bias acts as a sieve through

which studies are evaluated, encompassing the choices made by researchers to refrain

from submitting their study for publication, as well as the subsequent decisions by jour-

nal editors and peer reviewers on whether to publish. Mathur (2022) describes this bias,

resulting from study-level selection through the research and publication process, as ”se-

lection across studies” (SAS).

However, within individual studies, the results are often vulnerable to manipulation

or selective reporting, known as ”specification search,” ”p-hacking,” or ”data dredging”

(Brodeur et al., 2022; Brodeur et al., 2020; Lang, 2023; Mathur, 2022). Actively seek-

ing specifications that produce significant results can alter both the effect size and the

standard error, leading to spurious precision (Irsova, Doucouliagos, et al., 2023). This

undermines a fundamental assumption of meta-analysis, both in selection models and

meta-regression analysis, as their reliability depends on the unbiasedness of the point es-

timates and standard errors. If this condition is not met, it significantly undermines the

trustworthiness of the results derived from these methodologies. Although theoretically

the difference between publication bias and p-hacking is distinct, they are observationally

equivalent.

The literature acknowledges the consequences of published p-hacked coefficients, but

the extent and measurement of p-hacking remain ambiguous. While Brodeur et al. (2022)

argue for the dominant role of p-hacking in publication bias, Lang, 2023 finds limited

evidence for this phenomenon. In this paper, I distinguish the effects of p-hacking from

publication bias by analyzing the correlation between point estimates and standard errors

within and across studies, using a dataset of approximately 400 meta-studies with nearly

200,000 estimates from around 19,000 individual studies. I employ a dual-regression
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approach: Between-Effect Regression and Fixed-Effect (or Within-Effect) Regression, to

identify and compare the relative extent of bias in both analyses. I define p-hacking

as the action of the authors that causes the correlation between the point estimate and

the standard error within the study - the selection bias within the study. I employ

fixed-effects analysis to identify within-study selection bias, controlling for study-specific

characteristics. Next, I apply different meta-regression analysis techniques on means of

coefficient and standard error pairs for each study to identify the selection bias between

studies, measuring the magnitude of selection across studies and the selection type that

does not introduce bias in point estimates.

I focus on five key bias correction estimators: the Egger equation, quantile regression,

the PEESE, the combined PET-PEESE approach, and the Endogenous Kink (EK) model.

My goal is to evaluate the extent of selection bias arising from within-study manipulations

versus across-study biases. For this analysis, I adopt the instrumental approach detailed

by Irsova, Bom, et al. (2023) for each estimation technique.

The results show a higher level of bias in fixed-effect analyses, indicating a substantial

contribution of practices like p-hacking to selection bias in the economic literature. My

analysis reveals that selective reporting and p-hacking are 20 to 30% more prevalent

compared to selection between studies, aligning with Brodeur et al. (2022). This outcome

indicates a substantial contribution of practices such as p-hacking and method searching

to selection bias in the economic literature, leading to a potentially inaccurate perception

of robustness in published findings.

The paper is structured as follows: Section 2 discusses the theoretical foundations

of bias detection techniques. Section 3 examines the data. Section 4 introduces the

empirical techniques and discusses the results. The final section summarizes the findings

and implications.
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2 Theoretical Foundation

According to the traditional definition of publication bias, research results are selected for

publication based on their direction and statistical significance. Although this selective

publication process skews the overall distribution of reported results in the literature, it

is often assumed that the chosen results are unbiased estimations of the true underlying

effect relative to their respective population effect. Therefore, most publication bias

detection and correction techniques rely on this assumption. However, (Brodeur et al.,

2022; Brodeur et al., 2016; Irsova, Bom, et al., 2023; Mathur, 2022) point to the possible

manipulation of design choices that influence standard errors and coefficients to increase

the probability of publication. In observational research, the derivation of the standard

error is subject to various complicated design choices and with different choices of model

specification, both effect size and standard error change, since both jointly contribute to

statistical significance. Design choices aiming at increased significance naturally cause

spurious precision and violate the core assumption of unbiased estimates. Violation of

this assumption renders metaregression analysis incapable of correcting for publication

bias. Irsova, Bom, et al. (2023) state that in this case ”the simple unweighted mean is

often the best, but still no good”. Although the literature agrees on potential consequences

of published phacked coefficients, the significance of the matter or the way to measure it

is till ambiguous.

In this section, I discuss the theoretical foundation of meta-regression analysis (MRA)

and the importance of the underlying unbiasedness assumption of the point estimate.

First, I present the theory behind identifying the true mean beyond bias, then I discuss

estimation techniques when the assumption of unbiasdness holds and when it does not.

Finally, show my identification strategy to measure the magnitude of phacking compared

to selection across studies.

Similarly to Jackson and Mackevicius (2023), I start by building the discussion from

the points estimates in each study. Consider a series of studies to estimate the effect

size of a specific research question. Each study uses distinct sample specifications and

robust techniques to achieve unbiased estimates. In this scenario, the study i produces an
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estimated effect, represented as α̂i, which is expected to be close to the actual true effect,

denoted as αi. The discrepancies between these estimated and true effects result from

sampling errors and measurement inaccuracies. Additionally, I follow the conventional

assumption that the true effect size follows a normal distribution with a mean of Θ and

a variance of ℵ2:

αi ∼N(Θ,ℵ2) (1)

Following the Central Limit Theorem1, the distribution of the estimated effect size is:

α̂i ∼N(αi,σ
2
i ) (2)

This implies that as the number of studies increases, the distribution of their estimated

effects, even with sampling and measurement errors, tends to follow a normal distribution

centered around the true effect.

α̂i ∼N(Θ,σ2
i + ℵ2) (3)

Therefore:

α̂i = αi +ui (4)

where ui ∼ iid N(0,σu) is noise due to the sampling or measurement error.

Let us now consider the classical definition of publication bias. The articles are

selected for publication on the basis of their coefficient estimate and significance. This

selection criterion leads to missing observations, conditional on coefficient size α̂i|α̂i > a,

and significance level α̂i|tα̂i
> c. This truncation then creates publication bias. Next, I

discuss each selection type separately.

Preferences for the coefficient estimate can be in its direction, magnitude, or proximity

to conventional beliefs. Let me assume that coefficients larger than some constant a are

preferred for simplicity. In the case of truncation based on the coefficient value, only
1The central limit theorem (CLT) states that the average from a random sample for any population

(with finite variance), when standardized, has an asymptotic standard normal distribution (Wooldridge,
2002). Here, the estimates have not been standardized; hence, they are normally distributed with mean
and variance.
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α̂ > a are observed; therefore, equation (4) becomes α̂i|α̂i > a = α̂i + u|αi > a, where

E[u|αi > a] , 0, and based on (3), to deduct the population mean of true effect Θ bias

introduced by truncation needs to be studied:

E[α̂i|α̂i > a] = αi +E[ui|α̂i > a] (5)

= αi +E[ui|ui > a−αi]

where σi is estimated standard error from study i, E[ui|ui > a−αi] = σiϕ(κ)/[1 −Φ(κ)]

and κ = (a− α̂i)/σi (see Greene, 1990, Theorem 2.2; Wooldridge, 2002; Johnson et al.,

1995). Therefore, the conditional expectation of the error term ui is the product of the

estimated standard error and the inverse Mill ratio, which is the ratio of the probability

density function to the complementary cumulative distribution function.

E[α̂i|α̂i > a] = αi +σi
ϕ(κ)

[1 −Φ(κ)]

Therefore, the meta-regression is as follows:

E[α̂i|α̂i > a] = αi +σiλ(κ) (6)

Thus, λ(κ) represents the inverse Mills ratio. If the truncation of the estimated coefficient

is from above αi|αi < a, then λ(κ) = −ϕ(κ)/Φ(κ). The term αi signifies the ’true’ effect,

while σ̂i denotes the standard error of the estimated coefficient.

The truncation of the significance is similar to the truncation of the coefficient estimate

(referred to as incidental truncation in Greene (1990), Theorem 2.5 also, see Heckman

(1979)). Now, I look at E[α̂i|α̂i/σi > c], where c is the critical value at which the

coefficient estimate becomes significant (frequently taken at c = 1.96). To apply the

same logic here, it is important to look at the distribution of α̂i and α̂i/σi. As discussed

above, using CLT, αi ∼N(αi,σi), therefore,

α̂i/σi ∼N(αi/σi,1) (7)
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with bivariate normal joint distribution. Therefore, following Theorem 2.5 in Greene

(1990)2

E[α̂i|t̂ > c] = αi +σiρ
ϕ(κit)

1 −Φ(κit)
(8)

where t̂= α̂i/σi, κt̂ = (c− t̂)/σit̂, and ρ= corr(αi, t̂) = 1. However, considering expression

(7), ρ= 1 and κt̂ = (c− α̂i/σi) resulting in the same form of meta-regression as shown in

Equation (6).

To estimate αi, often referred to as mean beyond bias in the meta-literature, one needs

to estimate λ(κ) first. However, in both cases, the conditional mean is a complex non-

linear function of the truncation value σ, α, and λ, while the second term of the equation,

λ(κ), is not constant with respect to α and σi. To express the complexity of this term, I

take the derivative of E[α̂|truncation] with respect to σ, I drop i for simplicity, however

it is assumed as before:

∂E[α̂|truncation]/∂σ = λ(κ) +σ∂λ(κ)/∂σ

= λ(κ) +σ∂λ(κ)/∂κ · (∂κ/∂σ)

where:

∂λ(κ)/∂κ= ϕ′(κ)[1 −Φ(κ)] +ϕ(κ)Φ ′(κ)
[1 −Φ(κ)]2

= ϕ′(κ)[1 −Φ(κ)] +ϕ(κ)2

[1 −Φ(κ)]2 (9)

= − ϕ(κ) ·κ
[1 −Φ(κ)] + ϕ(κ)2

[1 −Φ(κ)]2

= λ2(κ) −κ ·λ(κ)

as also shown in Heckman (1979). Therefore, after plugging in this derivative and deriva-

tive of κ wrt σ, I have:

∂E[α̂|truncation]/∂σ = λ(κ) + α

σ
[λ2(κ) −κ ·λ(κ)] (10)

2first moment of incidental truncation is α+ρσλ(κt), where ρ is correlation coefficient. However, here
corr(α,α/se) = 1
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Equation (6) is the statistical foundation of the meta-regression model for bias detection,

and Equation (10) shows the relation between the expected mean of truncated estimates

and their standard error.

A common approach in the literature to detect bias is to employ a truncated regression

model (see Equation 6), also known as the Egger’s equation.3

α̂i = α+λσi + ϵi (11)

This model aims to determine the presence of bias and to deduce the mean of the tar-

get coefficient adjusted for bias from the observed truncated distribution. To alleviate

heteroskedasticity, this equation is estimated using weighted least squares, weighted by

precision, where ti is the reported t statistics.

ti = λ+α(1/σi) +ui (12)

The test H0 : α = 0 is known as the Precision Effect Test (PET) in the literature and

provides a valid test to determine whether there is a nonzero empirical effect after correct-

ing for publication bias (Stanley, 2008). However, Egger’s equation struggles to correctly

identify the true mean α in cases of non-zero effect size. This is intuitive once we com-

pare Equation (11) with (6), since Egger’s regression estimates λ as a constant, while

it is a complex function λ(κi) of α̂ ,σ, and the truncation value c, see Equations ?? &

10. Therefore, Egger’s equation can correctly measure the extent of bias and identify the

mean beyond bias if the underlying empirical effect is zero (α = 0), granting the second

quadratic term of Equation 10 obsolete - ∂E[α̂|truncation]/∂σ = λ(κ) and leading to a

linear relation between the expected effect and the standard error. However, non-zero

cases remain challenging for PET approach.

The literature strand successfully addresses this issue, using different weighting and

Taylor approximation techniques to appeal to the second-order structure of the Equation

10 (Bom & Rachinger, 2019; Havránek, 2010; Ioannidis et al., 2017; Stanley, Doucou-
3Frequently written as coefi = α + βSEi + ui in the literature, where coef is a coefficient estimate,

and SE stands for the standard error. However, here, I opted to follow the initial notations.
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liagos, et al., 2007; Stanley & Doucouliagos, 2012, 2014). Stanley and Doucouliagos

(2014) recommends adopting a quadratic approximation approach, using the weighted

least squares (WLS) estimate of the mean beyond bias α.

α̂i = α+λσ2
i + ϵi or (13)

ti = λσi +α(1/σi) +ui (14)

where meta-regression (6) is using 1/σi or 1/σ2
i as the weights for the weighted least

squared estimation. In the literature, the estimated α is called the Precision Effect

Estimate with Standard Error (PEESE) (Havránek, 2010; Stanley, Doucouliagos, et al.,

2007; Stanley & Doucouliagos, 2012). Stanley and Doucouliagos (2014) suggest employing

the PEESE estimator, Equation 14 only when there is evidence of a non-zero effect (i.e.,

rejecting H0 : α = 0), and the PET estimator, Equation (11), when accepting H0 : α = 0,

resulting in PET-PEESE estimator.

Bom and Rachinger (2019) improve PET-PEESE by proposing the endogenous kink

(EK) metaregression model, offering a novel approach to correct for publication bias. A

distinctive feature of the EK model is the presence of a ’kink’ at a specific cut-off value

of the standard error. Below this cutoff point, publication selection is deemed unlikely.

Hence, the EK model approximates λ(κ) using a piece-wise linear meta-regression:

α̂i = α+ δ[σi − a]Iσi≥a + ϵi (15)

where, Iσi≥a is an indicator function that takes the value of one if σi is greater than or

equal to a, and zero otherwise. Similarly to PET, PET-PEESE, the EK model addresses

the heteroskedasticity of α̂i by dividing each term by 1/σi. The EK model endogenously

determines the cutoff value based on a preliminary estimate of the true effect and a

predefined threshold of statistical significance.

However, the literature is silent on bias detection and correction techniques in the

case of spurious precision. All of these methods are based on the implicit belief that

the reported nominal precision accurately reflects the true underlying precision. Irsova,
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Bom, et al. (2023) show that the simple unweighted mean can often outperform the

complex estimators even when the share of reported spurious precision is very low in

the meta-sample. Thus, they argue that when reported standard errors are manipulated

conventional solutions, designed to address publication bias, lead further away from true

mean. In observational studies, calculating the standard error is often a crucial part

of the research process. The process is complex, and varying the computation of confi-

dence intervals will lead the researcher to report different levels of precision for the same

estimated effect size, potentially leading to misleading results and spurious precision.

Figure 1, taken from Irsova, Bom, et al. (2023), illustrates the distributional conse-

quences of various actions such as cheating, clustering, correcting for heteroskedasticity

and addressing nonstationarity, all undertaken to obtain statistically significant results

without a solid theoretical or reasonable basis. This figure distinguishes between the

distributional effects of selection based on estimates (panel a), which is typical in the

existing literature, and selection based on standard errors (panel b). The panel (a) of

Figure 1: Spurious precision renders common meta-analysis techniques biased

Reference: Irsova, Z., Bom, P. R., Havranek, T., & Rachinger, H. (2023). Spurious
precision in meta-analysis, available at meta-analysis.cz/maive.

Figure 1 shows the cases in which researchers increase their selection efforts towards larger

estimates in response to noise (larger standard errors) in their data or methods leading to

imprecision and insignificance. With this manipulation, the most precise estimates stay
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close to the true effect. Therefore, inverse-variance weighting plays a role in reducing

bias and improving the efficiency of the aggregated estimate. In contrast, panel (b) of

Figure 1 shows the cases where researchers achieve statistical significance by reducing

the standard error. However, in this case, there is no bias in the reported effect sizes;

both the black-filled and the hollow circles represent identical effect sizes, with the only

difference being in precision. The straightforward unweighted average of these estimates

is unbiased, but applying inverse-variance weighting introduces an additional downward

bias.

The methodological recommendation of Irsova, Bom, et al. (2023) is to replace the

standard error reported with the portion of the error that can be explained by the sam-

ple size. They offer the Meta-analysis Instrumental Variable Estimator (MAIVE) model,

where they instrument standard error with the inverse of sample size. Since in most

contexts, the sample size is more difficult to increase than the standard error of p-hack,

Irsova, Bom, et al. (2023) show that the adjusted measure captures the underlying pre-

cision better.

σ2
i = ϕ0 +ϕ1(1/ni) + νi (16)

σi =
√
ϕ0 +ϕ1(1/ni) + νi (17)

where Equation 16 is the first stage regression for the PEESE and Equation 17 for the

PET estimation techniques; σi is the standard error of the effect size as reported in a

primary study; ψo is the constant term, ni denotes the sample size of the primary study,

and νi is an error term. The error term of the first stage regression, νi, absorbs the

spurious components of the reported standard error that are attributable to p-hacking.

Irsova, Bom, et al. (2023) simulate a realistic p-hacking scenario, suggesting that the

MAIVE version of PET-PEESE, without additional inverse variance weights, is more

resistant to spurious precision than other existing methods.

The primary aim of the paper is to assess the degree of selection bias resulting from

selection within studies (p-hacking) compared to selection across studies (publication
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bias, file drawer effect). To this end, I plan to conduct my analysis using the instrumental

approach as outlined by Irsova, Bom, et al. (2023). My focus is on the five bias-correction

estimators mentioned above: linear meta-regression, quantile regression, Precision-Effect

Estimate with Standard Errors (PEESE), PET-PEESE, and the Endogenous Kink (EK)

model. For the sake of developing intuition and maintaining simplicity, I begin with the

linear Egger’s equation. This is in line with the consensus in the literature that Egger’s

method is a reliable tool for detecting the presence of selection bias.

3 Data description

This thesis investigates the sources of selective reporting by examining within-study se-

lection and across-study selection in 400 meta-analyzes, encompassing more than 20,000

studies and 200,000 coefficient estimates from various fields of social sciences, mainly

economics. The meta-data set is a collection of data from previous and newly published

meta-studies. It contains meta-study and study-level information on authors, titles, pub-

lication years, and journals. Furthermore, the metadata contains coefficient estimates,

their respective standard errors, and the sample size from each study.

Many meta-studies examine closely related questions, often analyzing multiple coef-

ficients of interest corresponding to different true means. In such cases, data from these

meta-studies are classified into separate categories and included in the analysis as distinct

entities at the meta-level. For example, Balima et al. (2020) analyzes the impact of pub-

lication selection bias on the macroeconomic effects of inflation targeting. They consider

a variety of macroeconomic indicators, including the effects of inflation targeting on in-

flation, GDP, interest rate volatility, inflation volatility, growth volatility, exchange rate

volatility, and deficit. I retain the categorization of Balima et al. (2020)’s data, assigning

a unique meta-ID to each category and treating them as independent meta-studies.

An analysis of the journals where these meta-studies have been published reveals a

concentration in various economic disciplines. Figure 2 presents this distribution, cat-

egorizing research areas according to the SCImago Journal Rank (SJR). It also shows
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Figure 2: The meta-analyses published in journals areas

Note: Journal research areas classification according to the SCImago Science Journal
Rank (SJR), https://www.scimagojr.com/journalrank.php?area=2000

the frequency of publications within each research area. In particular, the fields of Eco-

nomics, Econometrics and Finance, with more than 100 meta-analyses, are also men-

tioned as part of the majority of other area classifications. The repeated appearance of

the Economics, Econometrics, and Finance classification throughout Figure 2 indicates

that our data set mainly comprises estimates drawn from economic research.

Figure 2 shows the journals that are the most frequent outlets for published meta-

analyses in the data. Not surprisingly, it reflects the picture that can be seen in Figure 2,

where the most frequent research area is economics. In Figure 3, it is apparent that these

meta-studies are published more frequently in economic outlets, sometimes psychology,

or in interdisciplinary journals such as Journal of Health Economics. I present only those

journals that have published meta-study in the sample at least twice; however, similarly

to Figure 2, the economic journals are the majority of the journals, and social science

and interdisciplinary journals are the second most frequent and rarely medicine.

To understand the extent of bias in the literature, I use Egger’s regression coefij =

α+βSEij + ϵij , where coefij & SEij is the estimated coefficient and standard error pair

j of study i, α is the mean beyond bias, β estimates the extent and existence of bias. I
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Figure 3: Meta-analyses per journal

Note: a list of journals that are the most frequent publishers of meta-studies included in
the dataset.

run this regression analysis separately on data from k meta-studies, obtaining k number

of β coefficients for each topic. Figure 4 shows the distribution of βk in different topics.

Doucouliagos and Stanley (2013) categorizes the biases in little to modest category if

|β < 1|, substantial if 1 ≤ |β| ≤ 2 and severe for |β > 2|. I find substantial selectivity

across 91 different topics and severe in 44 topics in economics & social sciences. For 278

areas, bias falls into the little to modest category.

Finally, in Figure 5, I look at the distribution of t-statistics in published articles and

show evidence of potential p-hacking, as discussed in Brodeur et al. (2022). I use the

de-rounding technique and weight the z-statistics (measured as coefij/SEij) with the

inverse of the number of tests present in each article and superimpose an Epanechnikov

kernel density curve on the histogram. De-rounding does not change the shape of the

distribution; it only smooths potential discontinuities in histograms. Figure 5 presents
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Figure 4: Distribution of Selectivity in Empirical Economics.

Note: Bias estimated from Egger’s regression, coefi = α+βSEi+ϵi. The bias is considered
little to modest if |β < 1|, substantial if 1 ≤ |β| ≤ 2, and severe for |β > 2|. I find
substantial selectivity across 91 different topics and severe in 44 topics in economics &
social sciences. For 278 areas, bias falls in the little to modest category.

the two-humped camel-shaped pattern, bunching at z = 1.96, indicating the existence

of p-hacking. However, as pointed out in Kranz and Pütz (2021), this approach cannot

explain the excess share of observed z-statistics near zero.

The observed distribution of z statistics, even adjusted for rounding, consistently

shows two distinct peaks, one at zero and one around z = 2, Figure 5. However, Kranz

and Pütz (2021) point out that this second peak does not necessarily indicate p-hacking or

publication bias. It could also be explained by a latent mixed distribution resulting from

varying research objectives. For example, some studies could refine previous findings

with significant effects, while others could be more exploratory, lacking a solid prior

assumption of the actual effects being present. To demonstrate this numerically, Kranz

and Pütz (2021) consider 5,000 random samples from a combination of three Cauchy

distributions, each with a scale parameter of 0.8: one distribution has a center at 0,

representing exploratory research, while the other two, centered at -2 and 2, represent

more focused research. They show that the resulting distribution of absolute z-statistics

is very similar to the empirical distribution in the pooled data in Figure 5. This paper
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Figure 5: De-rounded & weighted distribution of z-statistics of published papers.

Note: The two-humped camel-shaped pattern, similar to Brodeur et al. (2020, 2023), is
evident.

contributes to this discussion by analyzing similar questions based on metar-egression

analysis.

4 Selection Within vs. Across Study

Study-fixed effects in metaregression provide a straightforward way to disentangle bias-

related variation into within- and between-study elements, an approach that has not been

systematically exploited.

There should be no correlation between estimates and standard errors if there is no

publication bias, that is, selection within (SWS) or across studies (SAS). Therefore, let

us assume for now that any correlation between the coefficient coef ij and its standard

error SEij indicates the existence of bias. Thus, the correlation between coef ij and SEij

within the study indicates bias from SWS, and the correlation between studies indicates

bias due to SAS.

I perform 400 fixed effect regressions to evaluate the selection of the within-study and

between-effect regressions to control the selection of the between-study for each meta-
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analyses k, study j and estimate i, I have the following:

coef ij = α+ βF ESEij + ej +uij

Where coef ij is the coefficient estimate i of study j; SEij is the corresponding standard

error; ej indicates characteristics specific to the study and uij is the error term.

FE: coef ij − coef j = α+ βF E(SEij −SEj) +uij

The fixed effect estimator takes care of the fixed effect of ej for the unobserved study

by subtracting the study mean estimates; thus, eliminating variation between studies, it

studies within-study variation.

In comparison, I study between study variations using an estimator between studies

taking averages over studies:

BE: coef j = α+ βBESEj +uj

Finally, I calculate βF E
k and βBE

k and derive ψk = βF E
k

βBE
k

for each meta-study k .

I estimate the ψk ratio from linear fixed effect and between effect models, winsorized

on 1, 2.5, and 5%. Table 1 shows the results of the most liberal 1% winsorization,

however, 2.4% and 5% winsorization showed very similar results. In this table, I present

the median and mean values of ψk with 95% confidence interval (CI) constructed using t

statistics for mean and bootstrapping with a sample with multiple repetitions for median.

Next, to alleviate the effect of outliers, I imply median regression, quantile regression

at 50%, on the original data without winorization. Next, in Table 2, I show the analysis

based on PEESE, PET-PEESE, and EK regressions. To control for possible p hacking

and avoid overestimation of bias, I employ suggestions Irsova, Bom, et al. (2023) and use

inverse of sample size to instrument for the standard errors.

In all five approaches (Tables 1 & 2), I find that the bias arising from the variation

within the study is greater than the selection between studies. Although the mean value is
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Table 1: Selection Within vs. Across Study

Linear Regression Quantile Regression
Median 1.16 1.12
Median CI [1.06; 1.46] [0.97; 1.38]

Mean 7.85 8.84
Mean CI [4.84; 10.87] [1.63; 16.06]

Number of Meta-Studies 412 368
In the table, the median and mean values of ψk are detailed, each accompanied by a 95%
confidence interval (CI). These intervals are calculated using t statistics for the mean
and bootstrapping with multiple repetitions for the median. Additionally, the dataset
has undergone winsorization at the 1st and 99th percentiles to enhance its statistical
robustness.

greater than 5 in all cases, this estimate can be influenced by how scattered the ψk values

are, since we are looking at different questions and fields. Therefore, it is essential to look

at the median value of ψk. Together, the median and mean values of the ratio suggest

that SWS is consistently larger compared to SAS, pointing to the prevelant evidence of

practices like method searching and p-hacking in the published and working literature.

These conclusions are drawn from looking at the complete data. Next, I look at only

published work to evaluate the comparison of SWS and SAS in published literature.

However, Tables 4 and 5 demonstrate that findings derived exclusively from published

literature are consistent with those obtained from the entire dataset. The Selection

Within Studies (SWS) is consistently found to be more pronounced than Selection Across

Studies (SAS). This pattern reinforces the notion that significant selection occurs at the

research stage, indicating a tendency to report certain results while omitting others,

potentially to strengthen the researcher’s argument or narrative.

5 Conclusion

In this study, I have conducted an analysis of a comprehensive meta-dataset comprising

more than 200,000 estimates from more than 19,000 studies across 400 different fields.

Utilizing key meta-regression methodologies, I present substantial evidence of selective
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Table 2: Selection Within vs. Across Study

PEESE PET-PEESE EK
Median 1.21 1.28 1.28
Median CI [1.12; 1.44] [1.10; 1.82] [1.08; 1.51]

Mean 8.33 7.02 4.45
Mean CI [2.21; 14.44] [1.73; 12.31] [1.93; 6.96]

Number of Meta-Studies 206 206 206
In this table, the median and mean values of ψk are presented, derived from the Instru-
mental Variable (IV) regressions of the PEESE, PET-PEESE, and EK models. These
values are accompanied by 95% confidence intervals (CIs), which are constructed using t
statistics for the mean and bootstrapping with multiple repetitions for the median. The
data set has been winorized at the 1st and 99th percentiles. The number of meta-studies
included in this analysis has been reduced to 206, as psik values from regressions with
first stage F-statistics less than 10 have been excluded.

reporting of coefficient estimates within studies that also find their way into published

literature.

This paper highlights the importance of p-hacking in the academic literature, con-

tributing to the emerging body of work by researchers such as Brodeur et al. (2022),

Lang (2023), Irsova, Doucouliagos, et al. (2023). It supports the issues raised by Irsova,

Bom, et al. (2023), underscoring the critical need for meta-analytical methodologies that

address the biases of p-hacking in conjunction with selection biases across studies. Fur-

thermore, the paper underscores the risks posed by practices such as p-hacking and

method searching to the robustness of established academic beliefs. It provides evidence

challenging the notion that these practices are merely concerns for unpublished research,

indicating their broader implications in the field.
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